Published in

Elsevier, Neurobiology of Aging, 12(32), p. 2323.e13-2323.e26, 2011

DOI: 10.1016/j.neurobiolaging.2010.06.009

Links

Tools

Export citation

Search in Google Scholar

HSV-1 promotes Ca2+ -mediated APP phosphorylation and Aβ accumulation in rat cortical neurons

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Epidemiological and experimental findings suggest that chronic infection with Herpes simplex virus type 1 (HSV-1) may be a risk factor for Alzheimer's disease (AD), but the molecular mechanisms underlying this association have not been fully identified. We investigated the effects of HSV-1 on excitability and intracellular calcium signaling in rat cortical neurons and the impact of these effects on amyloid precursor protein (APP) processing and the production of amyloid-β peptide (Aβ). Membrane depolarization triggering firing rate increases was observed shortly after neurons were challenged with HSV-1 and was still evident 12 hours postinfection. These effects depended on persistent sodium current activation and potassium current inhibition. The virally induced hyperexcitability triggered intracellular Ca(2+) signals that significantly increased intraneuronal Ca(2+) levels. It also enhanced activity- and Ca(2+)-dependent APP phosphorylation and intracellular accumulation of Aβ42. These findings indicate that HSV-1 causes functional changes in cortical neurons that promote APP processing and Aβ production, and they are compatible with the co-factorial role for HSV-1 in the pathogenesis of AD suggested by previous findings.