Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of the American Chemical Society, 43(133), p. 17156-17159, 2011

DOI: 10.1021/ja2079477

Links

Tools

Export citation

Search in Google Scholar

Dynamics and Transient Absorption Spectral Signatures of the Single-Wall Carbon Nanotube Electronically Excited Triplet State

Journal article published in 2011 by Jaehong Park ORCID, Pravas Deria ORCID, Michael J. Therien
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We utilize femtosecond-to-microsecond time domain pump-probe transient absorption spectroscopy to interrogate for the first time the electronically excited triplet state of individualized single-wall carbon nanotubes (SWNTs). These studies exploit (6,5) chirality-enriched SWNT samples and poly[2,6-{1,5-bis(3-propoxysulfonic acid sodium salt)}naphthylene]ethynylene (PNES), which helically wraps the nanotube surface with periodic and constant morphology (pitch length = 10 ± 2 nm), providing a self-assembled superstructure that maintains structural homogeneity in multiple solvents. Spectroscopic interrogation of such PNES-SWNT samples in aqueous and DMSO solvents using E(22) excitation and a white-light continuum probe enables E(11) and E(22) spectral evolution to be monitored concomitantly. Such experiments not only reveal classic SWNT singlet exciton relaxation dynamics and transient absorption signatures but also demonstrate spectral evolution consistent with formation of a triplet exciton state. Transient dynamical studies evince that (6,5) SWNTs exhibit rapid S(1)→T(1) intersystem crossing (ISC) (τ(ISC) ~20 ps), a sharp T(1)→T(n) transient absorption signal (λ(max)(T(1)→T(n)) = 1150 nm; full width at half-maximum ≈ 350 cm(-1)), and a substantial T(1) excited-state lifetime (τ(es) ≈ 15 μs). Consistent with expectations for a triplet exciton state, T(1)-state spectral signatures and T(1)-state formation and decay dynamics for PNES-SWNTs in aqueous and DMSO solvents, as well as those determined for benchmark sodium cholate suspensions of (6,5) SWNTs, are similar; likewise, studies that probe the (3)[(6,5) SWNT]* state in air-saturated solutions demonstrate (3)O(2) quenching dynamics reminiscent of those determined for conjugated aromatic hydrocarbon excited triplet states.