American Chemical Society, Journal of the American Chemical Society, 43(133), p. 17156-17159, 2011
DOI: 10.1021/ja2079477
Full text: Download
We utilize femtosecond-to-microsecond time domain pump-probe transient absorption spectroscopy to interrogate for the first time the electronically excited triplet state of individualized single-wall carbon nanotubes (SWNTs). These studies exploit (6,5) chirality-enriched SWNT samples and poly[2,6-{1,5-bis(3-propoxysulfonic acid sodium salt)}naphthylene]ethynylene (PNES), which helically wraps the nanotube surface with periodic and constant morphology (pitch length = 10 ± 2 nm), providing a self-assembled superstructure that maintains structural homogeneity in multiple solvents. Spectroscopic interrogation of such PNES-SWNT samples in aqueous and DMSO solvents using E(22) excitation and a white-light continuum probe enables E(11) and E(22) spectral evolution to be monitored concomitantly. Such experiments not only reveal classic SWNT singlet exciton relaxation dynamics and transient absorption signatures but also demonstrate spectral evolution consistent with formation of a triplet exciton state. Transient dynamical studies evince that (6,5) SWNTs exhibit rapid S(1)→T(1) intersystem crossing (ISC) (τ(ISC) ~20 ps), a sharp T(1)→T(n) transient absorption signal (λ(max)(T(1)→T(n)) = 1150 nm; full width at half-maximum ≈ 350 cm(-1)), and a substantial T(1) excited-state lifetime (τ(es) ≈ 15 μs). Consistent with expectations for a triplet exciton state, T(1)-state spectral signatures and T(1)-state formation and decay dynamics for PNES-SWNTs in aqueous and DMSO solvents, as well as those determined for benchmark sodium cholate suspensions of (6,5) SWNTs, are similar; likewise, studies that probe the (3)[(6,5) SWNT]* state in air-saturated solutions demonstrate (3)O(2) quenching dynamics reminiscent of those determined for conjugated aromatic hydrocarbon excited triplet states.