Published in

Wiley, Molecular Ecology, 3(13), p. 511-522, 2004

DOI: 10.1046/j.1365-294x.2004.2080.x

Links

Tools

Export citation

Search in Google Scholar

Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers

Journal article published in 2004 by S. Duran, M. Pascual, A. Estoup, X. Turon ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Different categories of molecular markers have been used so far to study the population structure of sponges. However, these markers often did not have the resolution power to address precisely questions on structuring processes, especially at the intrapopulational level. In this study we show that microsatellites fulfil these expectations, allowing a fine description of population structure at different geographical scales in the marine sponge Crambe crambe. Specimens were collected in 11 locations, representing most of the Atlanto-Mediterranean range of the species, and were analysed at six loci. As expected for a sessile invertebrate with lecitotrophic larvae, high levels of between-population structure were found (FST = 0.18) and a significant isolation-by-distance pattern was observed. A strong genetic structure was also found within sampled sites (FIS = 0.21) that may be explained by several factors including inbreeding, selfing and the Wahlund effect. In spite of a sampling design planned to avoid the sampling of clones, genotypically identical individuals for the six loci were found in some locations. The significance of these potential clones is discussed and their effect on the observed pattern of population structure assessed. Patterns of allelic distribution within populations suggest the possibility of a recent colonization of the Atlantic range from the Mediterranean Sea.