Published in

Oxford University Press, Endocrinology, 10(148), p. 4704-4710, 2007

DOI: 10.1210/en.2007-0107

Links

Tools

Export citation

Search in Google Scholar

Decreased Plasma Peptide YY Accompanied by Elevated Peptide YY and Y2 Receptor Binding Densities in the Medulla Oblongata of Diet-Induced Obese Mice

Journal article published in 2007 by Gita L. Rahardjo, Xu-Feng Huang ORCID, Yean Yeow Tan, Chao Deng ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

It is well known that the peripheral peptide YY (PYY)-central neuropeptide Y (NPY) Y2 receptor axis plays an important role in promoting negative energy balance regulation. Both the hypothalamus and medulla oblongata express a high level of Y2 receptors; however, the functional role of this receptor in chronic high-fat diet-induced obesity has not been fully examined. Using quantitative autoradiography, this study measured binding densities of total [(125)I]PYY and Y2 receptors in the hypothalamus and medulla of chronic high-fat diet-induced obese (DIO), obese-resistant, and low-fat-fed mice. Plasma PYY was also measured using RIA after 22 wk of dietary intervention. The results revealed that body weight gain was significantly higher in the obese mice, compared with the lean mice. Furthermore, PYY and NPY Y2 receptor binding densities in the medulla of the obese mice were significantly higher, compared with the lean mice, whereas the level of plasma PYY was significantly lower in the DIO mice than the low-fat-fed mice. In conclusion, this study showed that the DIO mice had low plasma PYY, which may have caused a compensatory up-regulation of PYY and Y2 receptor densities in the medulla. A low-level response of PYY-medullary regulation to positive energy balance may have contributed to the development of high-fat diet-induced obesity in DIO mice; conversely, a normal response of this regulatory axis in the obese-resistant mice may have contributed to the maintenance of body weight while on a high-fat diet.