Published in

Wiley, Photochemistry and Photobiology, 3(86), p. 722-726, 2010

DOI: 10.1111/j.1751-1097.2009.00699.x

Links

Tools

Export citation

Search in Google Scholar

Low-light-induced Violaxanthin De-epoxidation in Shortly Preheated Leaves: Uncoupling from ΔpH-dependent Nonphotochemical Quenching

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Plants protect themselves against excessive light by the induction of Delta pH-dependent nonphotochemical quenching (qE) that is associated with de-epoxidation of violaxanthin (V) to zeaxanthin (Z) in thylakoid membranes. In this work, we report that low light (12 micromol photons m(-2) s(-1)) is sufficient for a marked stimulation of the V to Z conversion in shortly preheated wheat leaves (5 min, 40 degrees C), but without a substantial increase in qE. Re-irradiation of these leaves with high light led to a rapid induction of nonphotochemical quenching, implying a potential photoprotective role of low-light-induced Z in preheated leaves. On the contrary to low light conditions, preheated leaves exposed to high light behaved similar to nonheated leaves with respect to the V to Z conversion and qE induction. The obtained results indicate that low-light-induced lumen acidification in preheated leaves is high enough to activate V de-epoxidation, but not sufficiently high to induce the formation of quenching centers.