Published in

Elsevier, Marine Environmental Research, (77), p. 23-29

DOI: 10.1016/j.marenvres.2012.01.002

Links

Tools

Export citation

Search in Google Scholar

Uptake and release of paralytic shellfish toxins by the clam Ruditapes decussatus exposed to Gymnodinium catenatum and subsequent depuration

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A laboratory experiment was performed with the clam Ruditapes decussatus, fed with the toxic dinoflagellate Gymnodinium catenatum and the non-toxic algae Isochrysis galbana (14 days) and subsequently only with I. galbana (15 days). Individual paralytic shellfish toxins were determined by LC-FLD in G. catenatum cells, whole clam tissues, and particulate organic matter (POM) produced by clams. The toxins dcSTX and dcGTX2 + 3 in the algae were less abundant than C1 + 2 and B1, but were predominant in clams during both the exposure and depuration phases. The toxin dcNEO was only detected in clams during a short period, indicating conversion from other compounds. The toxin composition of the POM indicated the export of dcSTX as faeces or pseudo-faeces along the entire experiment (2.5-14 nmol mg(-1)), B1 was present in a short period of the exposure and C1 + 2 and dcGTX2 + 3 absent. A mass balance calculation indicated that approximately 95% of C1 + 2 and 85% of B1 supplied to the clams were converted into other toxins or lost in solution. Conversely, the net gain of 512, 61 and 31 nmol for dcSTX, dcGTX2 + 3 and dcNEO, respectively, suggests the conversion from other assimilated compounds by clams during exposure and depuration phases.