Published in

American Physical Society, Physical Review A, 3(80), 2009

DOI: 10.1103/physreva.80.032328

Links

Tools

Export citation

Search in Google Scholar

Quantum computation via measurements on the low-temperature state of a many-body system

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We consider measurement-based quantum computation using the state of a spin-lattice system in equilibrium with a thermal bath and free to evolve under its own Hamiltonian. Any single qubit measurements disturb the system from equilibrium and, with adaptive measurements performed at a finite rate, the resulting dynamics reduces the fidelity of the computation. We show that it is possible to describe the loss in fidelity by a single quantum operation on the encoded quantum state that is independent of the measurement history. To achieve this simple description, we choose a particular form of spin-boson coupling to describe the interaction with the environment, and perform measurements periodically at a natural rate determined by the energy gap of the system. We found that an optimal cooling exists, which is a trade-off between keeping the system cool enough that the resource state remains close to the ground state, but also isolated enough that the cooling does not strongly interfere with the dynamics of the computation. For a sufficiently low temperature we obtain a fault-tolerant threshold for the couplings to the environment. Comment: 9 pages, 3 figures; v2 published version