Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 31(112), p. 9270-9274, 2008

DOI: 10.1021/jp804264m

Links

Tools

Export citation

Search in Google Scholar

Drifting Periodic Structures in a Degenerate-Planar Bent-Rod Nematic Liquid Crystal Beyond the Dielectric Inversion Frequency

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report on the electric-field-generated effects in the nematic phase of a twin mesogen formed of bent-core and calamitic units, aligned homeotropically in the initial ground state and examined beyond the dielectric inversion point. The bend-Freedericksz (BF) state occurring at the primary bifurcation and containing a network of umbilics is metastable; we focus here on the degenerate planar (DP) configuration that establishes itself at the expense of the BF state in the course of an anchoring transition. In the DP regime, normal rolls, broad domains, and chevrons (both defect-mediated and defect-free types) form at various linear defect-sites, in different regions of the frequency-voltage plane. A significant novel aspect common to all these patterned states is the sustained propagative instability, which does not seem explicable on the basis of known driving mechanisms.