Published in

2008 Workshop on Many-Task Computing on Grids and Supercomputers

DOI: 10.1109/mtags.2008.4777912

Links

Tools

Export citation

Search in Google Scholar

Many-task computing for grids and supercomputers

Proceedings article published in 2008 by Ioan Raicu, Ian T. Foster ORCID, Yong Zhao
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Many-task computing aims to bridge the gap between two computing paradigms, high throughput computing and high performance computing. Many task computing differs from high throughput computing in the emphasis of using large number of computing resources over short periods of time to accomplish many computational tasks (i.e. including both dependent and independent tasks), where primary metrics are measured in seconds (e.g. FLOPS, tasks/sec, MB/s I/O rates), as opposed to operations (e.g. jobs) per month. Many task computing denotes high-performance computations comprising multiple distinct activities, coupled via file system operations. Tasks may be small or large, uniprocessor or multiprocessor, compute-intensive or data-intensive. The set of tasks may be static or dynamic, homogeneous or heterogeneous, loosely coupled or tightly coupled. The aggregate number of tasks, quantity of computing, and volumes of data may be extremely large. Many task computing includes loosely coupled applications that are generally communication-intensive but not naturally expressed using standard message passing interface commonly found in high performance computing, drawing attention to the many computations that are heterogeneous but not ldquohappilyrdquo parallel.