Dissemin is shutting down on January 1st, 2025

Published in

Springer, Advances in Experimental Medicine and Biology, p. 29-61, 2012

DOI: 10.1007/978-3-7091-0932-8_2

Links

Tools

Export citation

Search in Google Scholar

Scaffold Proteins at the Postsynaptic Density

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Scaffold proteins are abundant and essential components of the postsynaptic density (PSD). They play a major role in many synaptic functions including the trafficking, anchoring, and clustering of glutamate receptors and adhesion molecules. Moreover, they link postsynaptic receptors with their downstream signaling proteins and regulate the dynamics of cytoskeletal structures. By definition, PSD scaffold proteins do not have intrinsic enzymatic activities but are formed by modular and specific domains deputed to form large protein networks. Here, we will discuss the latest findings regarding the structure and functions of major PSD scaffold proteins. Given that scaffold proteins are central components of PSD architecture, it is not surprising that deletion or mutations in their human genes cause severe neuropsychiatric disorders including autism, mental retardation, and schizophrenia. Thus, their dynamic organization and regulation are directly correlated with the essential structure of the PSD and the normal physiology of neuronal synapses.