Published in

Cambridge University Press, Radiocarbon, 1(53), p. 71-83, 2011

DOI: 10.1017/s0033822200034366

Links

Tools

Export citation

Search in Google Scholar

Radiocarbon and stable carbon analysis of dissolved methane and carbon dioxide from the profile of a raised peat bog

Journal article published in 2011 by Mh H. Garnett ORCID, Sml M. L. Hardie, C. Murray
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We developed and tested a new method to separate CO2 and CH4 from bulk gas samples for radiocarbon and stable-carbon analysis that utilizes a zeolite molecular sieve. To validate the technique, tests were performed using a suite of standard gases, composed of CO2 and CH4 of distinctly different isotopic composition. We employed the method to investigate the carbon isotopic composition of samples of dissolved CO2 and CH4 collected in situ from the near surface to deep layers of an ombrotrophic raised peat bog. Results showed that the age of both the CO2 and CH4 components of the dissolved gases increased with depth from ≃0–300 BP at 0.25 m to ≃4000 BP at 4 m. CH4 was mainly similar or slightly older in age compared to CO2, with the greatest difference in ages occurring at 1 m depth where CH4 was older by 430–615 yr. The δ13C values of CO2 increased with depth from −12.4‰ and −8.0‰ at 0.25 m to +6.9‰ and +8.3‰ at 4 m, whereas the δ13C of CH4 stayed in the range −58.4‰ to −70.6‰. The 14C results from the deepest layers are consistent with a similar source for both gases. 14C ages for the CO2 component were younger compared to CH4, within the shallower depths of the peat bog (≤1 m) and demonstrate the incorporation of acrotelm-derived respired CO2 into the catotelm.