Published in

Springer, Mycorrhiza, 4(17), p. 337-348, 2007

DOI: 10.1007/s00572-007-0110-0

Links

Tools

Export citation

Search in Google Scholar

Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi - Impact on plant performance and ectomycorrhizal community

Journal article published in 2007 by A. Menkis ORCID, R. Vasiliauskas, A. F. S. Taylor, J. Stenlid, R. Finlay
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The aim of a 3-year study was to investigate whether inoculation of Pinus sylvestris L. and Picea abies (L.) Karst. seedlings with mycorrhizas of Cenococcum geophilum Fr., Piceirhiza bicolorata, and Hebeloma crustuliniforme (Bull.) Quel. has any impact on: 1) survival and growth of outplanted seedlings on abandoned agricultural land, and 2) subsequent mycorrhizal community development. For inoculation, the root system of each plant was wrapped in a filter paper containing mycelium, overlaid with damp peat-sand mixture and wrapped in a paper towel. In total, 8,000 pine and 8,000 spruce seedlings were planted on 4-ha of poor sandy soil in randomized blocks. Already after the first year natural mycorrhizal infections prevailed in the inoculated root systems, and introduced mycorrhizas were seldom found. Yet, the seedlings that had been pre-inoculated with C. geophilum and the P. bicolorata during the whole 3-year period showed significantly higher survival and growth as compared to controls. Moreover, the independent colonization of roots by C. geophilum and the P. bicolorata from natural sources was also observed. A diverse mycorrhizal community was detected over two growing seasons in all treatments, showing low impact of inoculation on subsequent fungal community development. A total of 19 additional ectomycorrhizal morphotypes was observed, which clustered into two well-separated groups, according to host tree species (pine and spruce). In conclusion, the results showed limited ability to increase tree survival and growth, and to manipulate the mycorrhizal community even by extensive pre-inoculations, indicating that fungal community formation in root systems is governed mainly by environmental factors.