Published in

American Chemical Society, Chemistry of Materials, 23(22), p. 6370-6377, 2010

DOI: 10.1021/cm1023986

Links

Tools

Export citation

Search in Google Scholar

Alkane and Alkanethiol Passivation of Halogenated Ge Nanowires

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The ambient stability and surface coverage of halogen (Cl, Br, and I) passivated germanium nanowires were investigated by X-ray photoelectron and X-ray photoelectron emission spectroscopy. After exposure to air for 24 h, the stability of the halogen-terminated Ge nanowire surfaces toward reoxidation was found to improve with the increasing size of the halogen atoms, i.e., I > Br > Cl. Halogen termination was effective in removing the native Ge oxide (GeOx) and could also be utilized for further functionalization. Functionalization of the halogenated Ge nanowires was investigated using alkyl Grignard reagents and alkanethiols. The stability of the alkyl and alkanethiol passivation layers from the different halogen-terminated surfaces was investigated by X-ray photoelectron spectroscopy and attenuated total reflectance infrared spectroscopy. Alkanethiol functionalized nanowires showed greater resistance against reoxidation of the Ge surface compared to alkyl functionalization when exposed to ambient conditions for 1 week.