Published in

Taylor and Francis Group, Chronobiology International: The Journal of Biological and Medical Rhythm Research, 4(28), p. 318-329

DOI: 10.3109/07420528.2011.560317

Links

Tools

Export citation

Search in Google Scholar

Influence of Time of Day on Propofol Pharmacokinetics and Pharmacodynamics in Rabbits

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study evaluates the administration time-of-day effects on propofol pharmacokinetics and sedative response in rabbits. Nine rabbits were sedated with 5 mg/kg propofol at three local clock times: 10:00, 16:00, and 22:00 h. Each rabbit served as its own control by being given a single infusion at the three different times of day on three separate occasions. Ten arterial blood samples were collected during each clock-time experiment for propofol assay. A two-compartment model was used to describe propofol pharmacokinetics, and the pedal withdrawal reflex was used as the sedation pharmacodynamic response. The categorical data comprising the presence or absence of pedal withdrawal reflex was described by a logistic model. The typical volume of the central compartment equaled 7.67 L and depended on rabbit body weight. The elimination rate constant depended on drug administration time; it was lowest at 10:00 h, highest at 16:00 h, and intermediate at 22:00 h. Delay of the anesthetic effect, with respect to plasma concentrations, was described by the effect compartment, with the rate constant for the distribution to the effector compartment equal to 0.335 min(-1). Drug concentration had a large effect on the probability of anesthesia. The degree of anesthesia was largest at 10:00 h, lowest at 16:00 h, and intermediate at 22:00 h. In summary, both the pharmacokinetics and pharmacodynamics of propofol in rabbits depended on administration time. The developed population approach may be used to assess chronopharmacokinetics and chronopharmacodynamics of medications in animals and humans.