Dissemin is shutting down on January 1st, 2025

Published in

Instituto Nacional de Pesquisas da Amazônia, Acta Amazonica, 2(35), p. 185-196, 2005

DOI: 10.1590/s0044-59672005000200008

Links

Tools

Export citation

Search in Google Scholar

Quimica atmosferica na Amazonia: A floresta e as emissoes de queimadas controlando a composicao da atmosfera amazonica

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

The understanding of the natural processes that regulate atmospheric composition in Amazonia is critical to the establishment of a sustainable development strategy in the region. The large emissions of trace gases and aerosols during the dry season, as a result of biomass burning, profoundly change the composition of the atmosphere in most of its area. The concentration of trace gases and aerosols increases by a factor of 2 to 8 over large areas, affecting the natural mechanisms of several key atmospheric processes in the region. Cloud formation mechanisms, for instance, are strongly affected when the concentration of cloud condensation nuclei (CCN) changes from 200-300 CCN/cc in the wet season to 5,000-10,000 CCN/cc in the dry season. The cloud droplet radius is reduced from values of 18 to 25 micrometers in the wet season to 5 to 10 micrometers in the dry season, suppressing cloud formation and the occurrence of precipitation under some conditions. Ozone is a key trace gas for changes in the forest health, with concentrations increasing from 12 parts per billion (ppb), at the wet season, to values as high as 100 ppb (in the dry season in areas strongly affected by biomass burning emissions). At this level, ozone could be damaging the vegetation in regions far from the emissions. The atmospheric radiation balance is also strongly affected, with a net loss of up to 70% of photosynthetic active radiation at the surface. Pages: 191-208