Springer (part of Springer Nature), Marine Biology, 3(161), p. 725-729
DOI: 10.1007/s00227-013-2365-7
Full text: Download
Since the industrial revolution, [CO2]atm has increased from 280 μatm to levels now exceeding 380 μatm and is expected to rise to 730–1,020 μatm by the end of this century. The consequent changes in the ocean’s chemistry (e.g., lower pH and availability of the carbonate ions) are expected to pose particular problems for marine organisms, especially in the more vulnerable early life stages. The aim of this study was to investigate how the future predictions of ocean acidification may compromise the metabolism and swimming capabilities of the recently hatched larvae of the tropical dolphinfish (Coryphaena hippurus). Here, we show that the future environmental hypercapnia (ΔpH 0.5; 0.16 % CO2, ~1,600 μatm) significantly (p pCO2 (50 and 62.5 %, respectively). We argue that these hypercapnia-driven metabolic and locomotory challenges may potentially influence recruitment, dispersal success, and the population dynamics of this circumtropical oceanic top predator.