Published in

Elsevier, Phytomedicine, 3-4(20), p. 310-318

DOI: 10.1016/j.phymed.2012.09.020

Links

Tools

Export citation

Search in Google Scholar

Influence of resveratrol on rheumatoid fibroblast-like synoviocytes analysed with gene chip transcription

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that primarily attacks joints and is therefore a common cause of chronic disability and articular destruction. The hyperplastic growth of RA-fibroblast-like synoviocytes (FLSs) and their resistance against apoptosis are considered pathological hallmarks of RA. The natural antioxidant resveratrol is known for its antiproliferative and pro-apoptotic properties. This study investigated the effect of resveratrol on RA-FLS. RA-FLS were isolated from the synovium of 10 RA patients undergoing synovectomy or joint replacement surgery. RA-FLS were first stressed by pre-incubation with interleukin 1beta (IL-1β) and then treated with 100μM resveratrol for 24h. In order to evaluate the influence of resveratrol on the transcription of genes, a Gene Chip Human Gene 1.0 ST Array was applied. In addition, the effect of dexamethasone on proliferation and apoptosis of RA-FLS was compared with that of resveratrol. Gene array analysis showed highly significant effects of resveratrol on the expression of genes involved in mitosis, cell cycle, chromosome segregation and apoptosis. qRT-PCR, caspase-3/7 and proliferation assays confirmed the results of gene array analysis. In comparison, dexamethasone showed little to no effect on reducing cell proliferation and apoptosis. Our in vitro findings point towards resveratrol as a promising new therapeutic approach for local intra-articular application against RA, and further clinical studies will be necessary.