Published in

Wiley, Cellular Microbiology, 11(11), p. 1600-1611, 2009

DOI: 10.1111/j.1462-5822.2009.01350.x

Links

Tools

Export citation

Search in Google Scholar

Sialylated ligands on pathogenicTrypanosoma cruziinteract with Siglec-E (sialic acid-binding Ig-like lectin-E)

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Trypanosoma cruzi causes a suppression of the immune system leading to persistence in host cells. The trans-sialidase expressed by T. cruzi is a major virulence factor and transfers sialic acid from host glycoconjugates to mucin-like molecules on the parasite. Here we demonstrate that these sialylated structures play a role in the immunosuppression. We used two T. cruzi strains, whose TS activity correlated with their pathogenicity. The Tulahuen strain, characterized by a high TS activity efficiently infected mice, whereas the Tehuantepec strain showing a reduced TS activity could not establish a patent parasitemia. In vitro analysis revealed that these two strains invaded phagocytic and non-phagocytic host cells at a comparable rate, but they exhibited different potentials to modulate dendritic cell function. In contrast to Tehuantepec, the Tulahuen strain suppressed the production of the proinflammatory cytokine IL-12 and subsequent T-cell activation. This inhibitory effect was absent upon desialylation of the parasite. Therefore, we analysed whether sialylated structures of T. cruzi interact with the inhibitory sialic acid-binding protein Siglec-E on DC. Indeed, Siglec-E interacted with the pathogenic Tulahuen strain, but showed a diminished binding to the Tehuantepec strain. Ligation of Siglec-E on DC using antibodies confirmed this inhibitory effect on DC function.