Published in

Wiley, Molecular Ecology, 13(23), p. 3258-3272, 2014

DOI: 10.1111/mec.12743

Links

Tools

Export citation

Search in Google Scholar

Rich and cold: Diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic

Journal article published in 2014 by I. Timling, D. A. Walker, C. Nusbaum, N. J. Lennon, D. L. Taylor ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fungi are abundant and functionally important in the Arctic, yet comprehensive studies of their diversity in relation to geography and environment are not available. We sampled soils in paired plots along the North American Arctic Transect (NAAT), which spans all five bioclimatic subzones of the Arctic. Each pair of plots contrasted relatively bare, cryoturbated patterned-ground features (PGFs) and adjacent vegetated between patterned-ground features (bPGFs). Fungal communities were analyzed via sequencing of 7834 ITS-LSU clones. We recorded 1834 OTUs - nearly half the fungal richness previously reported for the entire Arctic. These OTUs spanned eight phyla, 24 classes, 75 orders, and 120 families, but were dominated by Ascomycota, with one-fifth belonging to lichens. Species richness did not decline with increasing latitude, although there was a decline in mycorrhizal taxa that was offset by an increase in lichen taxa. The dominant OTUs were widespread even beyond the Arctic, demonstrating no dispersal limitation. Yet fungal communities were distinct in each subzone, and were correlated with soil pH, climate and vegetation. Communities in subzone E were distinct from the other subzones, but similar to those of the boreal forest. Fungal communities on disturbed PGFs differed significantly from those of paired stable areas in bPGFs. Indicator species for PGFs included lichens and saprotrophic fungi, while bPGFs were characterized by ectomycorrhizal and pathogenic fungi. Our results suggest that the Arctic does not host a unique mycoflora, while Arctic fungi are highly sensitive to climate and vegetation, with potential to migrate rapidly as global change unfolds. This article is protected by copyright. All rights reserved.