Published in

Massachusetts Institute of Technology Press, The Journal of Cognitive Neuroscience, 5(22), p. 955-969, 2010

DOI: 10.1162/jocn.2009.21263

Links

Tools

Export citation

Search in Google Scholar

Dissociating Source Memory Decisions in the Prefrontal Cortex: fMRI of Diagnostic and Disqualifying Monitoring

Journal article published in 2009 by David A. Gallo, Ian M. McDonough, Jason Scimeca ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract We used event-related fMRI to study two types of retrieval monitoring that regulate episodic memory accuracy: diagnostic and disqualifying monitoring. Diagnostic monitoring relies on expectations, whereby the failure to retrieve expected recollections prevents source memory misattributions (sometimes called the distinctiveness heuristic). Disqualifying monitoring relies on corroborative evidence, whereby the successful recollection of accurate source information prevents misattribution to an alternative source (sometimes called recall to reject). Using criterial recollection tests, we found that orienting retrieval toward distinctive recollections (colored pictures) reduced source memory misattributions compared with a control test in which retrieval was oriented toward less distinctive recollections (colored font). However, the corresponding neural activity depended on the type of monitoring engaged on these tests. Rejecting items based on the absence of picture recollections (i.e., the distinctiveness heuristic) decreased activity in dorsolateral prefrontal cortex relative to the control test, whereas rejecting items based on successful picture recollections (i.e., a recall-to-reject strategy) increased activity in dorsolateral prefrontal cortex. There also was some evidence that these effects were differentially lateralized. This study provides the first neuroimaging comparison of these two recollection-based monitoring processes and advances theories of prefrontal involvement in memory retrieval.