Published in

American Meteorological Society, Journal of Climate, 5(7), p. 745-766, 1994

DOI: 10.1175/1520-0442(1994)007<0745:ooetde>2.0.co;2

Links

Tools

Export citation

Search in Google Scholar

Organization of Extratropical Transients during El Niño

Journal article published in 1994 by Martin P. Hoerling, Mingfang Ting
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Four observed El Nino-Southern Oscillation (ENSO) events are studied to determine the mechanisms responsible for the anomalous extratropical atmospheric circulation during northern winter. A parallel analysis of a GCM's response to El Nino is performed in order to assess if similar mechanisms are operative in the model atmosphere. The observed stationary wave anomalies over the Pacific/North American (PNA) region are found to be similar during the four winters despite appreciable differences in sea surface temperatures. The anomalous transient vorticity fluxes are remarkably robust over the North Pacific during each even, with an eastward extension of the climatological storm track leading to strong cyclonic forcing near 40[degrees]N, 150[degrees]W. This forcing is in phase with the seasonal mean Aleutian trough anomaly suggesting the important of eddy-mean flow interaction. By comparison, the intersample variability of the GCM response over the PNA region is found to exceed the observed inter-El Nino variability. This stems primarily from a large variability in the model's anomalous transients over the North Pacific. Further analysis reveals that extratropical vorticity transients are the primary mechanism maintaining the stationary wave anomalies over the PNA region during all four observed ENSO winters. In the case of the GCM, the organization of transient eddies is ill defined over the North Pacific, a behavior indicative of model error. A physical model is proposed to explain the robustness of the tropical controlling influence of the extratropical transients in nature. A simple equatorial Pacific heat source directly forces a tropical anticyclone whose phase relative to the climatological tropical anticyclone leads to an eastward extension of the subtropical jet stream. This mechanism appears to be equally effective for a heat source located either in the central or eastern Pacific basin. 36 refs., 14 figs.