Published in

American Institute of Physics, Applied Physics Letters, 1(105), p. 012905

DOI: 10.1063/1.4889803

Links

Tools

Export citation

Search in Google Scholar

Direct observation of intrinsic piezoelectricity of Pb(Zr,Ti)O3 by time-resolved x-ray diffraction measurement using single-crystalline films

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Lead zirconate titanate, Pb(Zr,Ti)O3 or PZT, is one of the most widely investigated ferroelectric and piezoelectric materials due to its superior properties. However, the intrinsic properties of PZT have not been directly measured due to the lack of fabrication of single crystals even though a basic understanding of intrinsic properties has been of interest developing lead-free piezoelectric materials. We demonstrated the direct observation of the intrinsic piezoelectric property by means of the detection of electric-field induced crystal lattice distortion of thick Pb(Zr0.35Ti0.65)O3 single-crystalline films with single polar-axis orientation and negligible residual strain using the time-resolved X-ray diffraction (XRD) together with the polarization response. Consequently, the effective converse piezoelectric response was experimentally revealed; hence, the electrostrictive coefficient, which is the conversion coefficient between the electrical and mechanical response, was determined. The obtained effective electrostrictive coefficient was 5.2–6.3 × 10−2 m4/C2, which agrees with theoretical prediction.