Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, European Journal of Medicinal Chemistry, (66), p. 122-134, 2013

DOI: 10.1016/j.ejmech.2013.05.027

Links

Tools

Export citation

Search in Google Scholar

Synthesis and pharmacological evaluation of new N-phenylpiperazine derivatives designed as homologues of the antipsychotic lead compound LASSBio-579

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In an attempt to increase the affinity of our antipsychotic lead compound LASSBio-579 (1-((1-(4-chlorophenyl)-1H-pyrazol-4-yl)methyl)-4-phenylpiperazine; (2)) for the 5-HT2A receptor, we synthesized five new N-phenylpiperazine derivatives using a linear synthetic route and the homologation strategy. The binding profile of these compounds was evaluated for a series of dopaminergic, serotonergic and alpha-adrenergic receptors relevant for schizophrenia, using classical competition assays. Increasing the length of the spacer between the functional groups of (2) proved to be appropriated since the affinity of these compounds increased 3-10-fold for the 5-HT2A receptor, with no relevant change in the affinity for the D2-like and 5-HT1A receptors. A GTP-shift assay also indicated that the most promising derivative (1-(4-(1-(4-chlorophenyl)-1H-pyrazol-4-yl) butyl)-4-phenylpiperazine) (LASSBio-1635) (6) has the expected efficacy at the 5-HT2A receptors, acting as an antagonist. Intraperitoneal administration of (6) prevented apomorphine-induced climbing behavior and ketamine-induced hyperlocomotion in mice, in a dose dependent manner. Together, these results show that (6) could be considered as a new antipsychotic lead compound.