Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Physics: Conference Series, (665), p. 012044, 2016

DOI: 10.1088/1742-6596/665/1/012044

Links

Tools

Export citation

Search in Google Scholar

Nuclear astrophysics with radioactive ions at FAIR

Journal article published in 2016 by R. Reifarth, S. Altstadt, K. Göbel ORCID, T. Heftrich, M. Heil, A. Koloczek, C. Langer, R. Plag, M. Pohl, K. Sonnabend, M. Weigand, T. Adachi, F. Aksouh, J. Al-Khalili, M. AlGarawi and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.