Published in

American Institute of Physics, Journal of Applied Physics, 3(98), p. 033904

DOI: 10.1063/1.1991968

Links

Tools

Export citation

Search in Google Scholar

On the relationship of magnetocrystalline anisotropy and stoichiometry in epitaxial L10 CoPt (001) and FePt (001) thin films

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Two series of epitaxial CoPt and FePt films, with nominal thicknesses of 42 or 50 nm, were prepared by sputtering onto single-crystal MgO(001) substrates in order to investigate the chemical ordering and the resultant magnetic properties as a function of alloy composition. In the first series, the film composition was kept constant, while the substrate temperature was increased from 144 to 704 °C. In the second series the substrate temperature was kept constant at 704 °C for CoPt and 620 °C for FePt, while the alloy stoichiometry was varied in the nominal range of 40–60-at. % Co(Fe). Film compositions and thicknesses were measured via Rutherford backscattering spectrometry. The lattice and long-range order parameter for the L10 phase were obtained for both sets of films using x-ray diffraction. The room-temperature magnetocrystalline anisotropy constants were determined for a subset of the films using torque magnetometry. The order parameter was found to increase with increasing temperature, with ordering occurring more readily in FePt when compared with CoPt. A perpendicular anisotropy developed in CoPt for substrate temperatures above 534 °C and in FePt above 321 °C. The structure and width of the magnetic domains in CoPt and FePt, as seen by magnetic force microscopy, also demonstrated an increase in magnetic anisotropy with increasing temperature. For the films deposited at the highest temperatures (704 °C for CoPt and 620 °C for FePt), the order parameter reached a maximum near the equiatomic composition, whereas the magnetocrystalline anisotropy increased as the concentration of Co or Fe was increased from below to slightly above the equiatomic composition. It is concluded that nonstoichiometric L10 CoPt and FePt, with a slight excess of Co or Fe, are preferable for applications requiring the highest anisotropies.