Published in

Nature Research, Scientific Reports, 1(4), 2014

DOI: 10.1038/srep05471

Links

Tools

Export citation

Search in Google Scholar

An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Single-molecule magnets are compounds that exhibit magnetic bistability purely of molecular origin. The control of anisotropy and suppression of quantum tunneling to obtain a comprehensive picture of the relaxation pathway manifold, is of utmost importance with the ultimate goal of slowing the relaxation dynamics within single-molecule magnets to facilitate their potential applications. Combined ab initio calculations and detailed magnetization dynamics studies reveal the unprecedented relaxation mediated via the second excited state within a new DyNCN system comprising a valence-localized carbon coordinated to a single dysprosium(III) ion. The essentially C2v symmetry of the Dy(III) ion results in a new relaxation mechanism, hitherto unknown for mononuclear Dy(III) complexes, opening new perspectives for means of enhancing the anisotropy contribution to the spin-relaxation barrier.