Published in

Public Library of Science, PLoS ONE, 3(8), p. e58609, 2013

DOI: 10.1371/journal.pone.0058609

Links

Tools

Export citation

Search in Google Scholar

The Impact of 3′UTR Variants on Differential Expression of Candidate Cancer Susceptibility Genes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Variants in regulatory regions are predicted to play an important role in disease susceptibility of common diseases. Polymorphisms mapping to microRNA (miRNA) binding sites have been shown to disrupt the ability of miRNAs to target genes resulting in differential mRNA and protein expression. Skin tumor susceptibility 5 (Skts5) was identified as a locus conferring susceptibility to chemically-induced skin cancer in NIH/Ola by SPRET/Outbred F1 backcrosses. To determine if polymorphisms between the strains which mapped to putative miRNA binding sites in the 3′ untranslated region (3′UTR) of genes at Skts5 influenced expression, we conducted a systematic evaluation of 3′UTRs of candidate genes across this locus. Nine genes had polymorphisms in their 3′UTRs which fit the linkage data and eight of these contained polymorphisms suspected to interfere with or introduce miRNA binding. 3′UTRs of six genes, Bcap29, Dgkb, Hbp1, Pik3cg, Twistnb, and Tspan13 differentially affected luciferase expression, but did not appear to be differentially regulated by the evaluated miRNAs predicted to bind to only one of the two isoforms. 3′UTRs from four additional genes chosen from the locus that fit less stringent criteria were evaluated. Ifrd1 and Etv1 showed differences and contained polymorphisms predicted to disrupt or create miRNA binding sites but showed no difference in regulation by the miRNAs tested. In summary, multiple 3′UTRs with putative functional variants between susceptible and resistant strains of mice influenced differential expression independent of predicted miRNA binding.