Dissemin is shutting down on January 1st, 2025

Links

Tools

Export citation

Search in Google Scholar

Kernel Partial Least Squares is Universally Consistent

Journal article published in 2009 by Gilles Blanchard, Nicole Kraemer, N. Krämer ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We prove the statistical consistency of kernel Partial Least Squares Regression applied to a bounded regression learning problem on a reproducing kernel Hilbert space. Partial Least Squares stands out of well-known classical approaches as e.g. Ridge Regression or Principal Components Regression, as it is not defined as the solution of a global cost minimization procedure over a fixed model nor is it a linear estimator. Instead, approximate solutions are constructed by projections onto a nested set of data-dependent subspaces. To prove consistency, we exploit the known fact that Partial Least Squares is equivalent to the conjugate gradient algorithm in combination with early stopping. The choice of the stopping rule (number of iterations) is a crucial point. We study two empirical stopping rules. The first one monitors the estimation error in each iteration step of Partial Least Squares, and the second one estimates the empirical complexity in terms of a condition number. Both stopping rules lead to universally consistent estimators provided the kernel is universal. Comment: 18 pages, no figures