Published in

Elsevier, Advances in Water Resources, (71), p. 65-80

DOI: 10.1016/j.advwatres.2014.06.001

Links

Tools

Export citation

Search in Google Scholar

Impact of fracture network geometry on free convective flow patterns

Journal article published in 2014 by Katharina Vujević, Thomas Graf, Craig T. Simmons ORCID, Adrian D. Werner ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effect of fracture network geometry on free convection in fractured rock is studied using numerical simulations. We examine the structural properties of fracture networks that control the onset and strength of free convection and the patterns of density-dependent flow. Applicability of the equivalent porous medium approach (EPM) is also tested, and recommendations are given, for which situations the EPM approach is valid. To date, the structural properties of fracture networks that determine free convective flow are examined only in few, predominantly simplified regular fracture networks. We consider fracture networks containing continuous, discontinuous, orthogonal and/or inclined discrete fractures embedded in a low-permeability rock matrix. The results indicate that bulk permeability is not adequate to infer the occurrence and magnitude of free convection in fractured rock. Fracture networks can inhibit or promote convection depending on the fracture network geometry. Continuous fracture circuits are the crucial geometrical feature of fracture networks, because large continuous fracture circuits with a large vertical extent promote convection. The likelihood of continuous fracture circuits and thus of free convection increases with increasing fracture density and fracture length, but individual fracture locations may result in great deviances in strength of convection between statistically equivalent fracture networks such that prediction remains subject to large uncertainty.