Published in

American Heart Association, Stroke, 6(44), p. 1641-1646, 2013

DOI: 10.1161/strokeaha.113.001122

Links

Tools

Export citation

Search in Google Scholar

CLOTBUST-Hands Free

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background and Purpose— We aimed to evaluate safety and tolerability of a novel operator-independent ultrasound device among stroke-free volunteers. Methods— A headframe containing 18 ultrasound transducers (each operating at 2 MHz, pulsed-wave) was used to expose both temporal windows and the suboccipital window. The transmission characteristics were set to emulate the acoustic characteristics of the exposure levels in the Combined Lysis of Thrombus in Brain Ischemia using Transcranial Ultrasound and Systemic tPA (CLOTBUST) trial and to never exceed Food and Drug Administration mandated diagnostic ultrasound exposure limits. Volunteers underwent 2 hours of insonation with transducer activation one at a time. Safety was captured using serial neurological examinations and pre- and postinsonation MRI for detection of the blood brain barrier permeability. Results— A total of 15 volunteers (40% men; 49±16 years; 27% black; all pre-exposure National Institutes of Health Stroke Scale scores 0) were enrolled. Five volunteers received pulsed-wave ultrasound via the best pair temporal transducers, 5 via sequential activation of the suboccipital transducers, and 5 via sequential activation of all bilateral temporal and suboccipital transducers. All subjects were safely insonated with no adverse effects as indicated by the neurological examinations during, immediately after the exposure, and at 24 hours, and no abnormality of the blood brain barrier was found on any of the MRIs. Conclusions— Our novel device was well tolerated by stroke-free volunteers and did not cause any neurological dysfunction nor did it affect blood brain barrier integrity. The safety and efficacy of the device are now being tested in stroke patients receiving intravenous tissue-type plasminogen activator in phase II–III clinical trials.