Dissemin is shutting down on January 1st, 2025

Published in

Emerging Digital Micromirror Device Based Systems and Applications VII

DOI: 10.1117/12.2085032

Links

Tools

Export citation

Search in Google Scholar

TheSi elegansconnectome: A neuromimetic emulation of neural signal transfer with DMD-structured light

Journal article published in 2015 by Alexey Petrushin, Lorenzo Ferrara ORCID, Axel Blau
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Our current understanding of brain function is still too limited to take advantage of the computational power of even the simplest biological nervous systems. To fill this gap, the Si elegans project (www.si-elegans.eu) aims at developing a computational framework that will replicate the nervous system and rich behavior of the nematode Caenorhabditis elegans, a tiny worm with just 302 neurons. One key element of this emulation testbed is an electro-optical, micromirrorbased connectome. Unlike any other current ICT communication protocol, we expect it to accurately mimic the parallel information transfer between neurons. This strategy promises to give new insights into the nature of two hypothesized key mechanisms - the parallel and precisely timed information flow - that make brains excel von-Neumann-type machines. In this contribution, we briefly introduce the overall Si elegans concept to then describe the requirements for designing a light-based connectome within the given boundary conditions imposed by the hardware infrastructure it will be integrated into.