Published in

Elsevier, Optics and Lasers in Engineering, (73), p. 128-136, 2015

DOI: 10.1016/j.optlaseng.2015.04.013

Links

Tools

Export citation

Search in Google Scholar

Line laser lock-in thermography for instantaneous imaging of cracks in semiconductor chips

Journal article published in 2015 by Yun-Kyu An ORCID, Jinyeol Yang, Soonkyu Hwang, Hoon Sohn ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study proposes a new line laser lock-in thermography (LLT) technique for instantaneous inspection of surface cracks in semiconductor chips. First, a new line LLT system is developed by integrating a line scanning laser source, a high-speed infrared (IR) camera with a close-up lens, and a control computer. The proposed line LLT system scans a line laser beam onto a target semiconductor chip surface and measures the corresponding thermal wave propagation using an IR camera. A novel baseline-free crack visualization algorithm is then proposed so that heat blocking phenomena caused by crack formation can be automatically visualized and diagnosed without relying on the baseline data obtained from the pristine condition of a target semiconductor chip. The proposed inspection technique offers the following advantages over the existing semiconductor chip inspection techniques: (1) inspection is performed in a noncontact, nondestructive and nonintrusive manner; (2) the crack diagnosis can be accomplished using only current-state thermal images and thus past thermal images are unnecessary; and (3) crack detectability is significantly enhanced by achieving high spatial resolution for thermal images and removing undesired noise components from the measured thermal images. Validation tests are performed on two different types of semiconductor die chips with real micro-cracks produced during actual fabrication processes. The experiments demonstrate that the proposed line LLT technique can successfully visualize and detect semiconductor chip cracks with width of 28–54 μm.