Published in

Springer (part of Springer Nature), Bioprocess and Biosystems Engineering, 5(38), p. 805-814

DOI: 10.1007/s00449-014-1322-2

Links

Tools

Export citation

Search in Google Scholar

Immobilization of Candida rugosa lipase onto an eco-friendly support in the presence of ionic liquid

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Candida rugosa lipase (CRL) was immobilized on an eco-friendly support poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV), by physical adsorption, using different ionic liquids (ILs) as immobilization additives. This was to investigate the influence of cationic core ([C4mpy]Cl, [C4min]Cl), of anions ([C4min]Cl, [C4min]N(CN)2, [C4min]Tf2N), and of cation chain length ([C2min]Tf2N, [C4min]Tf2N) in the immobilization process. The immobilized biocatalysts (IB) were characterized with respect to the morphological, physico-chemical properties, total activity recovery yield (Ya), and biochemical properties of more efficient IB were evaluated. Initially, it was found that the change of cationic core did not influence in Ya compared to the control. With change of anions, it was seen that the best result was obtained for the more hydrophobic anion (Tf2N), and finally increasing the cation chain length increased Ya. IB most efficient with [C4min]Tf2N obtained 78 % of Ya, more than twice the control value (30 %) and a considerable enhancement of operational stability compared with the control.