Published in

The Royal Society, Proceedings of the Royal Society B: Biological Sciences, 1806(282), p. 20142726, 2015

DOI: 10.1098/rspb.2014.2726

Links

Tools

Export citation

Search in Google Scholar

Sex-chromosome differentiation and 'sex races' in the common frog (Rana temporaria)

Journal article published in 2015 by Nicolas Rodrigues, Yvan Vuille, Jon Loman, Nicolas Perrin ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sex-chromosome differentiation was recently shown to vary among common frog populations in Fennoscandia, suggesting a trend of increased differentiation with latitude. By rearing families from two contrasted populations (respectively, from northern and southern Sweden), we show this disparity to stem from differences in sex-determination mechanisms rather than in XY-recombination patterns. Offspring from the northern population display equal sex ratios at metamorphosis, with phenotypic sexes that correlate strongly with paternal LG 2 haplotypes (the sex chromosome); accordingly, Y haplotypes are markedly differentiated, with male-specific alleles and depressed diversity testifying to their smaller effective population size. In the southern population, by contrast, a majority of juveniles present ovaries at metamorphosis; only later in development do sex ratios return to equilibrium. Even at these later stages, phenotypic sexes correlate only mildly with paternal LG 2 haplotypes; accordingly, there are no recognizable Y haplotypes. These distinct patterns of gonadal development fit the concept of ‘sex races’ proposed in the 1930s, with our two populations assigned to the ‘differentiated’ and ‘semi-differentiated’ races, respectively. Our results support the suggestion that ‘sex races’ differ in the genetic versus epigenetic components of sex determination. Analysing populations from the ‘undifferentiated race’ with high-density genetic maps should help to further test this hypothesis.