Published in

American Chemical Society, The Journal of Physical Chemistry A, 23(119), p. 5971-5978, 2015

DOI: 10.1021/jp511416h

IOP Publishing, Journal of Physics: Conference Series, 11(635), p. 112134, 2015

DOI: 10.1088/1742-6596/635/11/112134

Links

Tools

Export citation

Search in Google Scholar

Vibrationally Resolved B 1s Photoionization Cross Section of BF3

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Photoelectron diffraction is a well-established technique for structural characterization of solids, based on the interference of the native photoelectron wave with those scattered from the neighboring atoms. For isolated systems in the gas phase similar studies suffer from orders of magnitude lower signals due to the very small sample density. Here we present a detailed study of the vibrationally resolved B 1s photoionization cross section of BF3 molecule. A combination of high-resolution photoelectron spectroscopy measurements and of state-of-the-art static-exchange and time-dependent DFT calculations shows the evolution of the photon energy dependence of the cross section from a complete trapping of the photoelectron wave (low energies) to oscillations due to photoelectron diffraction phenomena. The diffraction pattern allows one to access structural information both for the ground neutral state of the molecule and for the core-ionized cation. Due to a significant change in geometry between the ground and the B 1s–1 core-ionized state in the BF3 molecule, several vibrational final states of the cation are populated, allowing investigation of eight different relative vibrationally resolved photoionization cross sections. Effects due to recoil induced by the photoelectron emission are also discussed.