Published in

American Physiological Society, Physiological Genomics, 14(44), p. 728-739, 2012

DOI: 10.1152/physiolgenomics.00007.2012

Links

Tools

Export citation

Search in Google Scholar

Tissue-specific mRNA expression patterns reveal a coordinated metabolic response associated with genetic selection for milk production in cows

Journal article published in 2012 by R. Weikard, T. Goldammer ORCID, R. M. Brunner, C. Kuehn
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The molecular mechanisms regulating the physiological adaptation of tissues important for nutrient partitioning and metabolism in lactating cows are still not completely understood. The aim of our study was to identify tissue-specific regulatory mechanisms necessary to accommodate metabolic changes associated with different genetic potential for milk performance. For this purpose, we analyzed mRNA expression of genes involved in energy metabolism of segregating F2beef type cows with a combined genetic dairy and beef background (Charolais × German Holstein cross, CH×GH) in contrast to purebred German Holstein (GH) dairy cows. Three groups of cows differing in milk performance were examined using quantitative real-time PCR in liver, mammary gland, and skeletal muscle. Our results describe substantial tissue-specific differences in mRNA transcription profiles between cow groups in relation to their genetic potential for milk performance and highlight genes exhibiting specific, partially yet-unknown functions in dairy and beef type cows, e.g., upregulation of PCK2 transcripts in the mammary gland and FBP2 transcripts in skeletal muscle of dairy cows. Noticeably, PCCA and PPARGC1A mRNA abundance varied significantly across experimental groups in all three tissues, pointing to potential key gene functions in the metabolic adaptation relative to divergent milk production performance. Correlations of mRNA expression levels to milk performance traits indicate that gene transcriptional processes may play a regulatory role in liver, mammary gland, and skeletal muscle to enable cows with different genetic potential for milk performance to cope with metabolic lactation-associated challenges.