Published in

American Meteorological Society, Bulletin of the American Meteorological Society, 12(96), p. 2151-2165, 2015

DOI: 10.1175/bams-d-13-00171.1



Export citation

Search in Google Scholar

The Amazon Dense GNSS Meteorological Network: A New Approach for Examining Water Vapor and Deep Convection Interactions in the Tropics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO


Abstract The complex interactions between water vapor fields and deep atmospheric convection remain one of the outstanding problems in tropical meteorology. The lack of high spatial–temporal resolution, all-weather observations in the tropics has hampered progress. Numerical models have difficulties, for example, in representing the shallow-to-deep convective transition and the diurnal cycle of precipitation. Global Navigation Satellite System (GNSS) meteorology, which provides all-weather, high-frequency (5 min), precipitable water vapor estimates, can help. The Amazon Dense GNSS Meteorological Network experiment, the first of its kind in the tropics, was created with the aim of examining water vapor and deep convection relationships at the mesoscale. This innovative, Brazilian-led international experiment consisted of two mesoscale (100 km × 100 km) networks: 1) a 1-yr (April 2011–April 2012) campaign (20 GNSS meteorological sites) in and around Manaus and 2) a 6-week (June 2011) intensive campaign (15 GNSS meteorological sites) in and around Belem, the latter in collaboration with the Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (CHUVA) Project in Brazil. Results presented here from both networks focus on the diurnal cycle of precipitable water vapor associated with sea-breeze convection in Belem and seasonal and topographic influences in and around Manaus. Ultimately, these unique observations may serve to initialize, constrain, or validate precipitable water vapor in high-resolution models. These experiments also demonstrate that GNSS meteorology can expand into logistically difficult regions such as the Amazon. Other GNSS meteorology networks presently being constructed in the tropics are summarized.