Published in

Elsevier, Nano Energy, (17), p. 356-365

DOI: 10.1016/j.nanoen.2015.09.007

Links

Tools

Export citation

Search in Google Scholar

Self-powered transparent flexible graphene microheaters

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Transparent and flexible (TF) microheaters are required in wearable devices, labs-on-chip, and micro-reactors. Nevertheless, conventional microheaters are rigid or opaque or both. Moreover, the resistances of conventional metallic microheaters are too low to be effectively powered by wearable energy harvesters. Here, we demonstrate the first TF microheaters by taking advantage of chemical vapor deposition (CVD)-grown graphene heating tracks and of a hexagonal boron nitride (h-BN) sheet for passivation; the h-BN sheet increases the maximum temperature by ~80%. Our TF microheaters show excellent temperature uniformity and can reach temperatures above 200. °C in just 4 s, with power consumption as low as 39 mW. Additionally, since the CVD-graphene sheet resistance is orders of magnitude higher than that of typical metallic heaters, our devices can be effectively powered by wearable energy harvesters. As a proof-of-concept, we demonstrate the first self-powered, wearable microheater which achieves a temperature increase of 8. °C when operated by a sound driven textile-based triboelectric nanogenerator. This is a key milestone towards next generation microheaters with applications in portable/wearable personal electronics, wireless health, and remote and mobile environmental sensors.