Published in

Society for Neuroscience, Journal of Neuroscience, 5(35), p. 1880-1891, 2015

DOI: 10.1523/jneurosci.3429-14.2015

Links

Tools

Export citation

Search in Google Scholar

KChIP-Like Auxiliary Subunits of Kv4 Channels Regulate Excitability of Muscle Cells and Control Male Turning Behavior during Mating in Caenorhabditis elegans

Journal article published in 2015 by Xin Chen, Mei-Yu Ruan, Shi-Qing Cai
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Voltage-gated Kv4 channels control the excitability of neurons and cardiac myocytes by conducting rapidly activating-inactivating currents. The function of Kv4 channels is profoundly modulated by K+channel interacting protein (KChIP) soluble auxiliary subunits. However, thein vivomechanism of the modulation is not fully understood. Here, we identified threeC. elegansKChIP-like (ceKChIP) proteins, NCS-4, NCS-5, and NCS-7. All three ceKChIPs alter electrical characteristics of SHL-1, aC. elegansKv4 channel ortholog, currents by slowing down inactivation kinetics and shifting voltage dependence of activation to more hyperpolarizing potentials. Native SHL-1 current is completely abolished in cultured myocytes of Triple KO worms in which all three ceKChIP genes are deleted. Reexpression of NCS-4 partially restored expression of functional SHL-1 channels, whereas NCS-4(efm), a NCS-4 mutant with impaired Ca2+-binding ability, only enhanced expression of SHL-1 proteins, but failed to transport them from the Golgi apparatus to the cell membrane in body wall muscles of Triple KO worms. Moreover, translational reporter revealed that NCS-4 assembles with SHL-1 K+channels in male diagonal muscles. Deletion of eitherncs-4orshl-1significantly impairs male turning, a behavior controlled by diagonal muscles during mating. The phenotype of thencs-4null mutant could be rescued by reexpression of NCS-4, but not NCS-4(efm), further emphasizing the importance of Ca2+binding to ceKChIPs in regulating native SHL-1 channel function. Together, these data reveal an evolutionarily conserved mechanism underlying the regulation of Kv4 channels by KChIPs and unravel critical roles of ceKChIPs in regulating muscle cell excitability and animal behavior inC. elegans.