Published in

American Chemical Society, Macromolecules, 14(48), p. 4891-4900, 2015

DOI: 10.1021/acs.macromol.5b00462

Links

Tools

Export citation

Search in Google Scholar

Highly Enhanced Crystallization Kinetics of Poly(L-lactic acid) by Poly(ethylene glycol) Grafted Graphene Oxide Simultaneously as Heterogeneous Nucleation Agent and Chain Mobility Promoter

Journal article published in 2015 by Jia-Zhuang Xu, Zi-Jing Zhang, Huan Xu, Jing Bin Chen, Rong Ran, Zhong-Ming Li
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nanofillers can act as effective heterogeneous nucleation agents for semicrystalline polymers; however, it never facilitates the crystal growth. In the current work, we proposed a facile strategy to enhance the crystallization kinetics of poly(l-lactic acid) (PLLA) by simultaneously accelerating the crystal nucleation and growth. Herein, we synthesized poly(ethylene glycol) (PEG) grafted graphene oxide (GO) (PEGgGO). Pronounced effects of PEGgGO on the crystalline morphology and crystallization rate of PLLA were explicitly clarified by direct morphological observation and quantitative crystallization kinetics analysis. The results manifested that, in contrast to the unmodified GO, PEGgGO desirably dispersed in PLLA and also preserved the high nucleation ability. More importantly, the flexible PEG chains on GO served as a chain mobility promoter and boosted the crystal growth rate of PLLA. Compared to the PLLA/GO nanocomposite containing 0.5 wt % GO, the nucleation density and crystal growth rate of the PLLA/PEGgGO one were increased by 110% and 14.3% at the crystallization temperature of 130 °C, respectively, leading to 52.2% relative augment in the final crystallinity. Our proposed methodology offers the flexibility of fabricating the polymer nanocomposits with well-dispersed nanofillers and also high crystallinity, by which the step toward the high-performance nanocomposites will be further.