Published in

CSIRO Publishing, Functional Plant Biology, 8(32), p. 671

DOI: 10.1071/fp05072

Links

Tools

Export citation

Search in Google Scholar

A novel T-DNA vector design for selection of transgenic lines with simple transgene integration and stable transgene expression

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Plants transformed with Agrobacterium frequently contain T-DNA concatamers with direct-repeat (d / r) or inverted-repeat (i / r) transgene integrations, and these repetitive T-DNA insertions are often associated with transgene silencing. To facilitate the selection of transgenic lines with simple T-DNA insertions, we constructed a binary vector (pSIV) based on the principle of hairpin RNA (hpRNA)-induced gene silencing. The vector is designed so that any transformed cells that contain more than one insertion per locus should generate hpRNA against the selective marker gene, leading to its silencing. These cells should, therefore, be sensitive to the selective agent and less likely to regenerate. Results from Arabidopsis and tobacco transformation showed that pSIV gave considerably fewer transgenic lines with repetitive insertions than did a conventional T-DNA vector (pCON). Furthermore, the transgene was more stably expressed in the pSIV plants than in the pCON plants. Rescue of plant DNA flanking sequences from pSIV plants was significantly more frequent than from pCON plants, suggesting that pSIV is potentially useful for T-DNA tagging. Our results revealed a perfect correlation between the presence of tail-to-tail inverted repeats and transgene silencing, supporting the view that read-through hpRNA transcript derived from i / r T-DNA insertions is a primary inducer of transgene silencing in plants.