Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Ecological Modelling, 2-4(207), p. 277-285

DOI: 10.1016/j.ecolmodel.2007.05.005

Links

Tools

Export citation

Search in Google Scholar

Consequences of intraspecific variation for the structure and function of ecological communities Part 2: Linking diversity and function

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A central aim in ecology is to understand the relation between organism diversity and ecosystem functioning. We investigate this relation using a generic individual-based modelling framework described in part 1, in which individuals within a community are characterised by physiological traits and interact within a spatially structured environment. We explore the effect of intraspecific variation among individuals on community-scale productivity in a range of homogeneous and heterogeneous environments. We show that diversity among individuals has a significant, and in most but not all cases positive, impact on community productivity. At low levels of resource the persisting plants giving highest productivity have slowest uptake rates and longest times to reproduction. In contrast, at high levels of resource the persisting plants giving highest productivity have highest uptake levels and shortest time to reproduction. Thus, the individuals’ trait distributions defining community functioning emerge, after many iterations of the model, from the surviving individuals. We, therefore, show that different mechanisms, as evidenced in the surviving individuals’ traits, increase community productivity in different environmental contexts, and so demonstrate the importance of accounting for diversity at the scale of the individual. Consequently, progress may be made in linking diversity and function by considering small, manageable systems and making physiological measurements on individuals.