Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 6(119), p. 2425-2433, 2014

DOI: 10.1021/jp507272f

Links

Tools

Export citation

Search in Google Scholar

Femtosecond Transient Absorption Spectroscopy of the Medicinal Agent Curcumin in Diamide Linked γ-Cyclodextrin Dimers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Curcumin is a biologically active polyphenol and a yellow pigment extracted from turmeric. Our previous study has shown effective encapsulation of curcumin using diamide linked γ-cyclodextrin dimers, namely 66γCD2su and 66γCD2ur, through cooperative 1:1 host-guest complexation. In this study, the excited state dynamics of curcumin complexed with either 66γCD2su or 66γCD2ur in water are investigated using femtosecond transient absorption spectroscopy. Both 66γCD2su-curcumin and 66γCD2ur-curcumin complexes in water show only an excited state absorption (ESA) band at 530 nm without any stimulated emission (SE) signals, indicating non-radiative decays as the major relaxation pathway. The ESA dynamics of 66γCD2su-curcumin are similar to those of 66γCD2ur-curcumin, consisting of a rapid growth component and three decay components. The growth component, which has a time constant of 0.25- 0.41ps, is assigned to solvent reorganization. The relatively fast decay components with time constants of 9.3-21.8ps show significant deuterium isotope effect, indicating the presence of excited state intramolecular hydrogen atom transfer (ESIHT) of curcumin. The small-amplitude and slow decay components may be attributed to the dynamics of complexed curcumin and molecular motions due to flexibility of 66γCD2su and 66γCD2ur. In addition, transient absorption anisotropy measurements reveal slow rotational motions of 66γCD2su-curcumin and 66γCD2ur-curcumin complexes. The overall results show that complexation in 66γCD2su and 66γCD2ur has pronounced effects on the photophysics of curcumin.