Published in

Springer Nature [academic journals on nature.com], Cellular & Molecular Immunology, 4(13), p. 502-513, 2015

DOI: 10.1038/cmi.2015.32

Springer Nature [academic journals on nature.com], Cellular & Molecular Immunology

DOI: 10.1038/cmi.2015.032

Links

Tools

Export citation

Search in Google Scholar

Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To better elucidate epigenetic mechanisms that correlate with the dynamic gene expression program observed upon T-cell differentiation, we investigated the genomic landscape of histone modifications in naive and memory CD8(+) T cells. Using a ChIP-Seq approach coupled with global gene expression profiling, we generated genome-wide histone H3 lysine 4 (H3K4me3) and H3 lysine 27 (H3K27me3) trimethylation maps in naive, T memory stem cells, central memory cells, and effector memory cells in order to gain insight into how histone architecture is remodeled during T cell differentiation. We show that H3K4me3 histone modifications are associated with activation of genes, while H3K27me3 is negatively correlated with gene expression at canonical loci and enhancers associated with T-cell metabolism, effector function, and memory. Our results also reveal histone modifications and gene expression signatures that distinguish the recently identified T memory stem cells from other CD8(+) T-cell subsets. Taken together, our results suggest that CD8(+) lymphocytes undergo chromatin remodeling in a progressive fashion. These findings have major implications for our understanding of peripheral T-cell ontogeny and the formation of immunological memory.Cellular & Molecular Immunology advance online publication, 27 April 2015; doi:10.1038/cmi.2015.032.