Published in

Stockholm University Press, Tellus A: Dynamic Meteorology and Oceanography, 1(65), p. 20038, 2013

DOI: 10.3402/tellusa.v65i0.20038

Links

Tools

Export citation

Search in Google Scholar

Ensemble-based observation impact estimates using the NCEP GFS

Journal article published in 2013 by Yoichiro Ota, John C. Derber, Eugenia Kalnay, Takemasa Miyoshi ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The impacts of the assimilated observations on the 24-hour forecasts are estimated with the ensemble-based method proposed by Kalnay et al. using an ensemble Kalman filter (EnKF). This method estimates the relative impact of observations in data assimilation similar to the adjoint-based method proposed by Langland and Baker but without using the adjoint model. It is implemented on the National Centers for Environmental Prediction Global Forecasting System EnKF that has been used as part of operational global data assimilation system at NCEP since May 2012. The result quantifies the overall positive impacts of the assimilated observations and the relative importance of the satellite radiance observations compared to other types of observations, especially for the moisture fields. A simple moving localisation based on the average wind, although not optimal, seems to work well. The method is also used to identify the cause of local forecast failure cases in the 24-hour forecasts. Data-denial experiments of the observations identified as producing a negative impact are performed, and forecast errors are reduced as estimated, thus validating the impact estimation.