Published in

Cell Press, Neuron, 3(33), p. 439-452, 2002

DOI: 10.1016/s0896-6273(02)00573-1

Links

Tools

Export citation

Search in Google Scholar

The Life Cycle of Ca2+ Ions in Dendritic Spines

Journal article published in 2002 by Bernardo L. Sabatini, Thomas G. Oertner ORCID, Karel Svoboda
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Spine Ca(2+) is critical for the induction of synaptic plasticity, but the factors that control Ca(2+) handling in dendritic spines under physiological conditions are largely unknown. We studied [Ca(2+)] signaling in dendritic spines of CA1 pyramidal neurons and find that spines are specialized structures with low endogenous Ca(2+) buffer capacity that allows large and extremely rapid [Ca(2+)] changes. Under physiological conditions, Ca(2+) diffusion across the spine neck is negligible, and the spine head functions as a separate compartment on long time scales, allowing localized Ca(2+) buildup during trains of synaptic stimuli. Furthermore, the kinetics of Ca(2+) sources governs the time course of [Ca(2+)] signals and may explain the selective activation of long-term synaptic potentiation (LTP) and long-term depression (LTD) by NMDA-R-mediated synaptic Ca(2+).