Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Physics Procedia, (34), p. 49-54, 2012

DOI: 10.1016/j.phpro.2012.05.008

Links

Tools

Export citation

Search in Google Scholar

Monte Carlo Studies of Protein Aggregation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The disease-linked amyloid β (Aβ) and α-synuclein (αS) proteins are both fibril-forming and natively unfolded in free monomeric form. Here, we discuss two recent studies, where we used extensive implicit solvent all-atom Monte Carlo (MC) simulations to elucidate the conformational ensembles sampled by these proteins. For αS, we somewhat unexpectedly observed two distinct phases, separated by a clear free-energy barrier. The presence of the barrier makes αS, with 140 residues, a challenge to simulate. By using a two-step simulation procedure based on flat-histogram techniques, it was possible to alleviate this problem. The barrier may in part explain why fibril formation is much slower for αS than it is for Aβ