Published in

American Chemical Society, Chemistry of Materials, 16(25), p. 3391-3397, 2013

DOI: 10.1021/cm402473j

Links

Tools

Export citation

Search in Google Scholar

Correlating the Lifetime and Fluorine Content of Iridium(III) Emitters in Green Light-Emitting Electrochemical Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In light-emitting electrochemical cells, the lifetime of the device is intrinsically linked to the stability of the phosphorescent emitter. In this study, we present a series of ionic iridium(III) emitters based on cyclometalating phenylpyridine ligands whose fluorine substituents are varied in terms of position and number. Importantly, despite these structural modifications, the emitters exhibit virtually identical electrochemical and spectroscopic properties, which allows for proper comparison in functional devices. Quantum-chemical calculations support the properties measured in solution and suggest great similarities regarding the electronic structures of the emitters. In electroluminescent devices, the initial luminance, efficiency, and efficacy are also relatively unaffected throughout the series. However, a shorter device lifetime is obtained upon increasing the fluorine content of the emitter, which suggests drawbacks of such electron-withdrawing substituents for the design of ionic iridium(III) emitters.