Published in

American Institute of Physics, Applied Physics Letters, 14(104), p. 141102

DOI: 10.1063/1.4870635

Links

Tools

Export citation

Search in Google Scholar

Ultrafast all-optical switching via coherent modulation of metamaterial absorption

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We report on the demonstration of a femtosecond all-optical modulator providing, without nonlinearity and therefore at arbitrarily low intensity, ultrafast light-by-light control. The device engages the coherent interaction of optical waves on a metamaterial nanostructure only 30 nm thick to efficiently control absorption of near-infrared (750-1040 nm) femtosecond pulses, providing switching contrast ratios approaching 3:1 with a modulation bandwidth in excess of 2 THz. The functional paradigm illustrated here opens the path to a family of novel meta-devices for ultra-fast optical data processing in coherent networks. ; Comment: 5 pages, 4 figures