Published in

American Physical Society, Physical review E: Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1(68), 2003

DOI: 10.1103/physreve.68.011904

Links

Tools

Export citation

Search in Google Scholar

Thermodynamic instability in supersaturated lysozyme solutions: Effect of salt and role of concentration fluctuations

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Experimental and theoretical work has suggested that protein crystal nucleation can be affected by the separation of two metastable liquid phases with different local concentrations, or more specifically by critical density fluctuations. We measure the amplitude and correlation length of local concentration fluctuations by light scattering for supersaturated solutions of hen egg-white lysozyme (at pH 4.5 and at different NaCl concentrations, up to 7% w/v). By extrapolating the critical divergent behavior of concentration fluctuation amplitude versus temperature, we determine the spinodal line, that is the limit of stability. Cloud-point measurements are used to determine liquid-liquid coexistence, consistent with previous work. In the present work, which is an extensive study of off-critical fluctuations in supersaturated protein solution, we observe a nonclassical scaling divergent behavior of the correlation length of concentration fluctuations, thus suggesting that off-critical fluctuations may have a role in crystallization kinetics. To appropriately fit the spinodal data, an entropic term must be added to the van der Waals or to the adhesive hard-sphere model. We interpret this contribution as due to the salt-induced modulation of protein hydration.